首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11615篇
  免费   46篇
  国内免费   71篇
系统科学   61篇
丛书文集   29篇
教育与普及   21篇
理论与方法论   32篇
现状及发展   5428篇
研究方法   586篇
综合类   5447篇
自然研究   128篇
  2012年   205篇
  2011年   300篇
  2010年   76篇
  2009年   74篇
  2008年   201篇
  2007年   242篇
  2006年   246篇
  2005年   233篇
  2004年   202篇
  2003年   195篇
  2002年   248篇
  2001年   435篇
  2000年   426篇
  1999年   288篇
  1992年   236篇
  1991年   194篇
  1990年   215篇
  1989年   191篇
  1988年   201篇
  1987年   219篇
  1986年   190篇
  1985年   252篇
  1984年   226篇
  1983年   171篇
  1982年   176篇
  1981年   180篇
  1980年   170篇
  1979年   403篇
  1978年   340篇
  1977年   250篇
  1976年   290篇
  1975年   259篇
  1974年   272篇
  1973年   224篇
  1972年   244篇
  1971年   308篇
  1970年   374篇
  1969年   254篇
  1968年   307篇
  1967年   292篇
  1966年   249篇
  1965年   178篇
  1964年   99篇
  1959年   88篇
  1958年   162篇
  1957年   100篇
  1956年   91篇
  1955年   85篇
  1954年   77篇
  1948年   64篇
排序方式: 共有10000条查询结果,搜索用时 46 毫秒
21.
A 3D porous carbon-manganese oxide ([email protected]) nanocomposite is successfully synthesized via a thermal plasma deposition method. The chemical bonds and compositions, phase structures, surface morphologies, etc. of as-obtained [email protected] nanocomposite were characterized by the various equipment, such as X-ray diffractometer, X-ray photoelectron spectroscopy, and electron microscopes. The electrochemical performances of the [email protected] nanocomposite electrode showed a specific capacitance of 780 F g?1 at a current density of 2 A g?1 and a capacitance retention rate of 99% after 5000 charge-discharge cycles at a high current density of 10 A g?1. These excellent capacitive performances may be attributed to the encapsulation of MnO nanoparticles by porous carbon sheets in the [email protected] MnO nanocomposite structure. It is believed that the carbon-encapsulated MnO nanoparticles can be protected from a volume deformation during the charge adsorption/desorption cycle and can be electrically improved by the encapsulated carbon sheets, resulting in better overall capacitive performance. In addition, this study also demonstrates the practical applicability by assembling a supercapacitor using the as-obtained [email protected] nanocomposite to glow a light emitting diode.  相似文献   
22.
Nitrogen-bisphosphonates (n-BP), such as zoledronate, are the main class of drugs used for the prevention of osteoporotic fractures and the management of cancer-associated bone disease. However, long-term or high-dose use has been associated with certain adverse drug effects, such as osteonecrosis of the jaw and the loss of peripheral of blood Vγ9Vδ2 T cells, which appear to be linked to drug-induced immune dysfunction. In this report we show that neutrophils present in human peripheral blood readily take up zoledronate, and this phenomenon is associated with the potent immune suppression of human peripheral blood Vγ9Vδ2 T cells. Furthermore, we found this zoledronate-mediated inhibition by neutrophils could be overcome to fully reconstitute Vγ9Vδ2 T cell proliferation by concomitantly targeting neutrophil-derived hydrogen peroxide, serine proteases, and arginase I activity. These findings will enable the development of targeted strategies to mitigate some of the adverse effects of n-BP treatment on immune homeostasis and to improve the success of immunotherapy trials based on harnessing the anticancer potential of peripheral blood γδ T cells in the context of n-BP treatment.  相似文献   
23.
P4-ATPases are lipid flippases that catalyze the transport of phospholipids to create membrane phospholipid asymmetry and to initiate the biogenesis of transport vesicles. Here we show, for the first time, that lipid flippases are essential to dampen the inflammatory response and to mediate the endotoxin-induced endocytic retrieval of Toll-like receptor 4 (TLR4) in human macrophages. Depletion of CDC50A, the β-subunit that is crucial for the activity of multiple P4-ATPases, resulted in endotoxin-induced hypersecretion of proinflammatory cytokines, enhanced MAP kinase signaling and constitutive NF-κB activation. In addition, CDC50A-depleted THP-1 macrophages displayed reduced tolerance to endotoxin. Moreover, endotoxin-induced internalization of TLR4 was strongly reduced and coincided with impaired endosomal MyD88-independent signaling. The phenotype of CDC50A-depleted cells was also induced by separate knockdown of two P4-ATPases, namely ATP8B1 and ATP11A. We conclude that lipid flippases are novel elements of the innate immune response that are essential to attenuate the inflammatory response, possibly by mediating endotoxin-induced internalization of TLR4.  相似文献   
24.
25.
Brain-derived neurotrophic factor (BDNF) is a secreted protein of the neurotrophin family that regulates brain development, synaptogenesis, memory and learning, as well as development of peripheral organs, such as angiogenesis in the heart and postnatal growth and repair of skeletal muscle. However, while precise regulation of BDNF levels is an important determinant in defining the biological outcome, the role of microRNAs (miRs) in modulating BDNF expression has not been extensively analyzed. Using in silico approaches, reporter systems, and analysis of endogenous BDNF, we show that miR-1, miR-10b, miR-155, and miR-191 directly repress BDNF through binding to their predicted sites in BDNF 3′UTR. We find that the overexpression of miR-1 and miR-10b suppresses endogenous BDNF protein levels and that silencing endogenous miR-10b increases BDNF mRNA and protein levels. Furthermore, we show that miR-1/206 binding sites within BDNF 3′UTR are used in differentiated myotubes but not in undifferentiated myoblasts. Finally, our data from two cell lines suggest that endogenous miR-1/206 and miR-10 family miRs act cooperatively in suppressing BDNF through their predicted sites in BDNF 3′UTR. In conclusion, our results highlight miR-1, miR-10b, miR-155, and miR-191 as novel regulators of BDNF long and short 3′UTR isoforms, supporting future research in different physiological and pathological contexts.  相似文献   
26.
27.
The aggregation and deposition of the amyloid-β peptide (Aβ) in the brain has been linked with neuronal death, which progresses in the diagnostic and pathological signs of Alzheimer’s disease (AD). The transition of an unstructured monomeric peptide into self-assembled and more structured aggregates is the crucial conversion from what appears to be a harmless polypeptide into a malignant form that causes synaptotoxicity and neuronal cell death. Despite efforts to identify the toxic form of Aβ, the development of effective treatments for AD is still limited by the highly transient and dynamic nature of interconverting forms of Aβ. The variability within the in vivo “pool” of different Aβ peptides is another complicating factor. Here we review the dynamical interplay between various components that influence the heterogeneous Aβ system, from intramolecular Aβ flexibility to intermolecular dynamics between various Aβ alloforms and external factors. The complex dynamics of Aβ contributes to the causative role of Aβ in the pathogenesis of AD.  相似文献   
28.
A facile and fast approach for the synthesis of a nanostructured nickel hydroxide(Ni(OH)_2) via sonochemical technique is reported in the present study. The X-ray diffraction results confirmed that the synthesized Ni(OH)_2 was oriented in β-phase of hexagonal brucite structure. The nanostructured Ni(OH)_2 electrode exhibited the maximum specific capacitance of 1256 F/g at a current density of 200 mA/g in 1 M KOH_((aq)). Ni(OH)_2 electrodes exhibited the pseudocapacitive behavior due to the presence of redox reaction. It also exhibited long-term cyclic stability of 85% after 2000 cycles, suggesting that the nanostructured Ni(OH)_2 electrode will play a promising role for high performance supercapacitor application.  相似文献   
29.
Arteries consist of an inner single layer of endothelial cells surrounded by layers of smooth muscle and an outer adventitia. The majority of vascular developmental studies focus on the construction of endothelial networks through the process of angiogenesis. Although many devastating vascular diseases involve abnormalities in components of the smooth muscle and adventitia (i.e., the vascular wall), the morphogenesis of these layers has received relatively less attention. Here, we briefly review key elements underlying endothelial layer formation and then focus on vascular wall development, specifically on smooth muscle cell origins and differentiation, patterning of the vascular wall, and the role of extracellular matrix and adventitial progenitor cells. Finally, we discuss select human diseases characterized by marked vascular wall abnormalities. We propose that continuing to apply approaches from developmental biology to the study of vascular disease will stimulate important advancements in elucidating disease mechanism and devising novel therapeutic strategies.  相似文献   
30.
Homeostasis of solid tissue is characterized by a low proliferative activity of differentiated cells while special conditions like tissue damage induce regeneration and proliferation. For some cell types it has been shown that various tissue-specific functions are missing in the proliferating state, raising the possibility that their proliferation is not compatible with a fully differentiated state. While endothelial cells are important players in regenerating tissue as well as in the vascularization of tumors, the impact of proliferation on their features remains elusive. To examine cell features in dependence of proliferation, we established human endothelial cell lines in which proliferation is tightly controlled by a doxycycline-dependent, synthetic regulatory unit. We observed that uptake of macromolecules and establishment of cell–cell contacts was more pronounced in the growth-arrested state. Tube-like structures were formed in vitro in both proliferating and non-proliferating conditions. However, functional vessel formation upon transplantation into immune-compromised mice was restricted to the proliferative state. Kaposi’s sarcoma-associated herpes virus (KSHV) infection resulted in reduced expression of endothelial markers. Upon transplantation of infected cells, drastic differences were observed: proliferation arrested cells acquired a high migratory activity while the proliferating counterparts established a tumor-like phenotype, similar to Kaposi Sarcoma lesions. The study gives evidence that proliferation governs endothelial functions. This suggests that several endothelial functions are differentially expressed during angiogenesis. Moreover, since proliferation defines the functional properties of cells upon infection with KSHV, this process crucially affects the fate of virus-infected cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号